Gottfried Leibniz Bibliography Page

"Leibniz" redirects here. For other uses, see Leibniz (disambiguation).

Gottfried Wilhelm Leibniz

Portrait by Christoph Bernhard Francke

Born1 July 1646
Leipzig, Electorate of Saxony, Holy Roman Empire
Died14 November 1716(1716-11-14) (aged 70)
Hanover, Electorate of Hanover, Holy Roman Empire
Era17th-/18th-century philosophy
RegionWestern philosophy
Doctoral advisorBartholomäus Leonhard Schwendendörffer (Dr. jur. advisor)[2][3]
Other academic advisors
Notable studentsJacob Bernoulli (epistolary correspondent)
Christian Wolff (epistolary correspondent)

Main interests

Mathematics, physics, geology, medicine, biology, embryology, epidemiology, veterinary medicine, paleontology, psychology, engineering, linguistics, philology, sociology, metaphysics, ethics, economics, diplomacy, history, politics, music theory, poetry, logic, theodicy, universal language, universal science

Notable ideas


  • Berkeley, Platner, Voltaire, Hume, Kant, Russell, Wiener, Gödel, Riemann, Gauss, Lagrange, Euler, Heidegger, Peirce, Benoit Mandelbrot, Wundt, Frege, Rescher


Gottfried Wilhelm (von) Leibniz (;[5]German:[ˈɡɔtfʁiːt ˈvɪlhɛlm fɔn ˈlaɪbnɪts][6] or [ˈlaɪpnɪts];[7]French: Godefroi Guillaume Leibnitz;[8] 1 July 1646 [O.S. 21 June] – 14 November 1716) was a German polymath and philosopher who occupies a prominent place in the history of mathematics and the history of philosophy, having developed differential and integral calculusindependently of Isaac Newton.[9]Leibniz's notation has been widely used ever since it was published. It was only in the 20th century that his Law of Continuity and Transcendental Law of Homogeneity found mathematical implementation (by means of non-standard analysis). He became one of the most prolific inventors in the field of mechanical calculators. While working on adding automatic multiplication and division to Pascal's calculator, he was the first to describe a pinwheel calculator in 1685[10] and invented the Leibniz wheel, used in the arithmometer, the first mass-produced mechanical calculator. He also refined the binary number system, which is the foundation of virtually all digital computers.

In philosophy, Leibniz is most noted for his optimism, i.e. his conclusion that our Universe is, in a restricted sense, the best possible one that God could have created, an idea that was often lampooned by others such as Voltaire. Leibniz, along with René Descartes and Baruch Spinoza, was one of the three great 17th-century advocates of rationalism. The work of Leibniz anticipated modern logic and analytic philosophy, but his philosophy also looks back to the scholastic tradition, in which conclusions are produced by applying reason to first principles or prior definitions rather than to empirical evidence.

Leibniz made major contributions to physics and technology, and anticipated notions that surfaced much later in philosophy, probability theory, biology, medicine, geology, psychology, linguistics, and computer science. He wrote works on philosophy, politics, law, ethics, theology, history, and philology. Leibniz also contributed to the field of library science. While serving as overseer of the Wolfenbüttel library in Germany, he devised a cataloging system that would serve as a guide for many of Europe's largest libraries.[11] Leibniz's contributions to this vast array of subjects were scattered in various learned journals, in tens of thousands of letters, and in unpublished manuscripts. He wrote in several languages, but primarily in Latin, French, and German.[12] There is no complete gathering of the writings of Leibniz translated into English.[13]


Early life[edit]

Gottfried Leibniz was born on 1 July 1646, toward the end of the Thirty Years' War, in Leipzig, Saxony, to Friedrich Leibniz and Catharina Schmuck. Friedrich noted in his family journal:

21. Juny am Sontag 1646 Ist mein Sohn Gottfried Wilhelm, post sextam vespertinam 1/4 uff 7 uhr abents zur welt gebohren, im Wassermann.

In English:

On Sunday 21 June [NS: 1 July] 1646, my son Gottfried Wilhelm is born into the world a quarter after six in the evening, in Aquarius.[14][15]

Leibniz was baptized on 3 July of that year at St. Nicholas Church, Leipzig; his godfather was the Lutheran theologian Martin Geier (de).[16] His father died when he was six and a half years old, and from that point on he was raised by his mother. Her teachings influenced Leibniz's philosophical thoughts in his later life.[citation needed]

Leibniz's father had been a Professor of Moral Philosophy at the University of Leipzig, and the boy later inherited his father's personal library. He was given free access to it from the age of seven. While Leibniz's schoolwork was largely confined to the study of a small canon of authorities, his father's library enabled him to study a wide variety of advanced philosophical and theological works—ones that he would not have otherwise been able to read until his college years.[17] Access to his father's library, largely written in Latin, also led to his proficiency in the Latin language, which he achieved by the age of 12. He also composed 300 hexameters of Latin verse, in a single morning, for a special event at school at the age of 13.[18]

In April 1661 he enrolled in his father's former university at age 15,[1][19] and completed his bachelor's degree in Philosophy in December 1662. He defended his Disputatio Metaphysica de Principio Individui (Metaphysical Disputation on the Principle of Individuation),[20] which addressed the principle of individuation, on 9 June 1663. Leibniz earned his master's degree in Philosophy on 7 February 1664. He published and defended a dissertationSpecimen Quaestionum Philosophicarum ex Jure collectarum (An Essay of Collected Philosophical Problems of Right),[20] arguing for both a theoretical and a pedagogical relationship between philosophy and law, in December 1664. After one year of legal studies, he was awarded his bachelor's degree in Law on 28 September 1665.[21] His dissertation was titled De conditionibus (On Conditions).[20]

In early 1666, at age 19, Leibniz wrote his first book, De Arte Combinatoria (On the Combinatorial Art), the first part of which was also his habilitation thesis in Philosophy, which he defended in March 1666.[20][22] His next goal was to earn his license and Doctorate in Law, which normally required three years of study. In 1666, the University of Leipzig turned down Leibniz's doctoral application and refused to grant him a Doctorate in Law, most likely due to his relative youth.[23][24] Leibniz subsequently left Leipzig.[25]

Leibniz then enrolled in the University of Altdorf and quickly submitted a thesis, which he had probably been working on earlier in Leipzig.[26] The title of his thesis was Disputatio Inauguralis de Casibus Perplexis in Jure (Inaugural Disputation on Ambiguous Legal Cases).[20] Leibniz earned his license to practice law and his Doctorate in Law in November 1666. He next declined the offer of an academic appointment at Altdorf, saying that "my thoughts were turned in an entirely different direction".[27]

As an adult, Leibniz often introduced himself as "Gottfried von Leibniz". Many posthumously published editions of his writings presented his name on the title page as "Freiherr G. W. von Leibniz." However, no document has ever been found from any contemporary government that stated his appointment to any form of nobility.[28]


Leibniz's first position was as a salaried secretary to an alchemical society in Nuremberg.[29] He knew fairly little about the subject at that time but presented himself as deeply learned. He soon met Johann Christian von Boyneburg (1622–1672), the dismissed chief minister of the Elector of Mainz, Johann Philipp von Schönborn.[30] Von Boyneburg hired Leibniz as an assistant, and shortly thereafter reconciled with the Elector and introduced Leibniz to him. Leibniz then dedicated an essay on law to the Elector in the hope of obtaining employment. The stratagem worked; the Elector asked Leibniz to assist with the redrafting of the legal code for the Electorate.[31] In 1669, Leibniz was appointed assessor in the Court of Appeal. Although von Boyneburg died late in 1672, Leibniz remained under the employment of his widow until she dismissed him in 1674.[citation needed]

Von Boyneburg did much to promote Leibniz's reputation, and the latter's memoranda and letters began to attract favorable notice. After Leibniz's service to the Elector there soon followed a diplomatic role. He published an essay, under the pseudonym of a fictitious Polish nobleman, arguing (unsuccessfully) for the German candidate for the Polish crown. The main force in European geopolitics during Leibniz's adult life was the ambition of Louis XIV of France, backed by French military and economic might. Meanwhile, the Thirty Years' War had left German-speaking Europe exhausted, fragmented, and economically backward. Leibniz proposed to protect German-speaking Europe by distracting Louis as follows. France would be invited to take Egypt as a stepping stone towards an eventual conquest of the Dutch East Indies. In return, France would agree to leave Germany and the Netherlands undisturbed. This plan obtained the Elector's cautious support. In 1672, the French government invited Leibniz to Paris for discussion,[32] but the plan was soon overtaken by the outbreak of the Franco-Dutch War and became irrelevant. Napoleon's failed invasion of Egypt in 1798 can be seen as an unwitting, late implementation of Leibniz's plan, after the Eastern hemisphere colonial supremacy in Europe had already passed from the Dutch to the British.[citation needed]

Thus Leibniz went to Paris in 1672. Soon after arriving, he met Dutch physicist and mathematician Christiaan Huygens and realised that his own knowledge of mathematics and physics was patchy. With Huygens as his mentor, he began a program of self-study that soon pushed him to making major contributions to both subjects, including discovering his version of the differential and integral calculus. He met Nicolas Malebranche and Antoine Arnauld, the leading French philosophers of the day, and studied the writings of Descartes and Pascal, unpublished as well as published.[33] He befriended a German mathematician, Ehrenfried Walther von Tschirnhaus; they corresponded for the rest of their lives.

When it became clear that France would not implement its part of Leibniz's Egyptian plan, the Elector sent his nephew, escorted by Leibniz, on a related mission to the English government in London, early in 1673.[34] There Leibniz came into acquaintance of Henry Oldenburg and John Collins. He met with the Royal Society where he demonstrated a calculating machine that he had designed and had been building since 1670. The machine was able to execute all four basic operations (adding, subtracting, multiplying, and dividing), and the society quickly made him an external member.

The mission ended abruptly when news of the Elector's death (12 February 1673) reached them. Leibniz promptly returned to Paris and not, as had been planned, to Mainz.[35] The sudden deaths of his two patrons in the same winter meant that Leibniz had to find a new basis for his career.

In this regard, a 1669 invitation from the John Frederick of Brunswick to visit Hanover proved to have been fateful. Leibniz had declined the invitation, but had begun corresponding with the duke in 1671. In 1673, the duke offered Leibniz the post of counsellor. Leibniz very reluctantly accepted the position two years later, only after it became clear that no employment in Paris, whose intellectual stimulation he relished, or with the Habsburg imperial court, was forthcoming.[citation needed]

In 1675 he tried to get admitted to the French Academy of Sciences as a foreign honorary member, but it was considered that there were already enough foreigners there and so no invitation came. He left Paris in October 1676.

House of Hanover, 1676–1716[edit]

Leibniz managed to delay his arrival in Hanover until the end of 1676 after making one more short journey to London, where Newton accused him of having seen Newton's unpublished work on calculus in advance.[36] This was alleged to be evidence supporting the accusation, made decades later, that he had stolen calculus from Newton. On the journey from London to Hanover, Leibniz stopped in The Hague where he met van Leeuwenhoek, the discoverer of microorganisms. He also spent several days in intense discussion with Spinoza, who had just completed his masterwork, the Ethics.[37]

In 1677, he was promoted, at his request, to Privy Counselor of Justice, a post he held for the rest of his life. Leibniz served three consecutive rulers of the House of Brunswick as historian, political adviser, and most consequentially, as librarian of the ducal library. He thenceforth employed his pen on all the various political, historical, and theological matters involving the House of Brunswick; the resulting documents form a valuable part of the historical record for the period.

Among the few people in north Germany to accept Leibniz were the Electress Sophia of Hanover (1630–1714), her daughter Sophia Charlotte of Hanover (1668–1705), the Queen of Prussia and his avowed disciple, and Caroline of Ansbach, the consort of her grandson, the future George II. To each of these women he was correspondent, adviser, and friend. In turn, they all approved of Leibniz more than did their spouses and the future king George I of Great Britain.[38]

The population of Hanover was only about 10,000, and its provinciality eventually grated on Leibniz. Nevertheless, to be a major courtier to the House of Brunswick was quite an honor, especially in light of the meteoric rise in the prestige of that House during Leibniz's association with it. In 1692, the Duke of Brunswick became a hereditary Elector of the Holy Roman Empire. The British Act of Settlement 1701 designated the Electress Sophia and her descent as the royal family of England, once both King William III and his sister-in-law and successor, Queen Anne, were dead. Leibniz played a role in the initiatives and negotiations leading up to that Act, but not always an effective one. For example, something he published anonymously in England, thinking to promote the Brunswick cause, was formally censured by the British Parliament.

The Brunswicks tolerated the enormous effort Leibniz devoted to intellectual pursuits unrelated to his duties as a courtier, pursuits such as perfecting calculus, writing about other mathematics, logic, physics, and philosophy, and keeping up a vast correspondence. He began working on calculus in 1674; the earliest evidence of its use in his surviving notebooks is 1675. By 1677 he had a coherent system in hand, but did not publish it until 1684. Leibniz's most important mathematical papers were published between 1682 and 1692, usually in a journal which he and Otto Mencke founded in 1682, the Acta Eruditorum. That journal played a key role in advancing his mathematical and scientific reputation, which in turn enhanced his eminence in diplomacy, history, theology, and philosophy.

The Elector Ernest Augustus commissioned Leibniz to write a history of the House of Brunswick, going back to the time of Charlemagne or earlier, hoping that the resulting book would advance his dynastic ambitions. From 1687 to 1690, Leibniz traveled extensively in Germany, Austria, and Italy, seeking and finding archival materials bearing on this project. Decades went by but no history appeared; the next Elector became quite annoyed at Leibniz's apparent dilatoriness. Leibniz never finished the project, in part because of his huge output on many other fronts, but also because he insisted on writing a meticulously researched and erudite book based on archival sources, when his patrons would have been quite happy with a short popular book, one perhaps little more than a genealogy with commentary, to be completed in three years or less. They never knew that he had in fact carried out a fair part of his assigned task: when the material Leibniz had written and collected for his history of the House of Brunswick was finally published in the 19th century, it filled three volumes.

Leibniz was appointed Librarian of the Herzog August Library in Wolfenbüttel, Lower Saxony, in 1691.

In 1708, John Keill, writing in the journal of the Royal Society and with Newton's presumed blessing, accused Leibniz of having plagiarised Newton's calculus.[39] Thus began the calculus priority dispute which darkened the remainder of Leibniz's life. A formal investigation by the Royal Society (in which Newton was an unacknowledged participant), undertaken in response to Leibniz's demand for a retraction, upheld Keill's charge. Historians of mathematics writing since 1900 or so have tended to acquit Leibniz, pointing to important differences between Leibniz's and Newton's versions of calculus.

In 1711, while traveling in northern Europe, the Russian TsarPeter the Great stopped in Hanover and met Leibniz, who then took some interest in Russian matters for the rest of his life. In 1712, Leibniz began a two-year residence in Vienna, where he was appointed Imperial Court Councillor to the Habsburgs. On the death of Queen Anne in 1714, Elector George Louis became King George I of Great Britain, under the terms of the 1701 Act of Settlement. Even though Leibniz had done much to bring about this happy event, it was not to be his hour of glory. Despite the intercession of the Princess of Wales, Caroline of Ansbach, George I forbade Leibniz to join him in London until he completed at least one volume of the history of the Brunswick family his father had commissioned nearly 30 years earlier. Moreover, for George I to include Leibniz in his London court would have been deemed insulting to Newton, who was seen as having won the calculus priority dispute and whose standing in British official circles could not have been higher. Finally, his dear friend and defender, the Dowager Electress Sophia, died in 1714.


Leibniz died in Hanover in 1716: at the time, he was so out of favor that neither George I (who happened to be near Hanover at that time) nor any fellow courtier other than his personal secretary attended the funeral. Even though Leibniz was a life member of the Royal Society and the Berlin Academy of Sciences, neither organization saw fit to honor his passing. His grave went unmarked for more than 50 years. Leibniz was eulogized by Fontenelle, before the French Academy of Sciences in Paris, which had admitted him as a foreign member in 1700. The eulogy was composed at the behest of the Duchess of Orleans, a niece of the Electress Sophia.

Personal life[edit]

Leibniz never married. He complained on occasion about money, but the fair sum he left to his sole heir, his sister's stepson, proved that the Brunswicks had, by and large, paid him well. In his diplomatic endeavors, he at times verged on the unscrupulous, as was all too often the case with professional diplomats of his day. On several occasions, Leibniz backdated and altered personal manuscripts, actions which put him in a bad light during the calculus controversy. On the other hand, he was charming, well-mannered, and not without humor and imagination.[40] He had many friends and admirers all over Europe. On Leibniz's religious views, though he was a protestant, Leibniz learned to appreciate the good sides of Catholicism through his patrons and colleagues. He never admitted the Protestant view of Pope as an Antichrist.[41] Leibniz was claimed as a philosophical theist.[42][43][44][45]


Leibniz's philosophical thinking appears fragmented, because his philosophical writings consist mainly of a multitude of short pieces: journal articles, manuscripts published long after his death, and many letters to many correspondents. He wrote only two book-length philosophical treatises, of which only the Théodicée of 1710 was published in his lifetime.

Leibniz dated his beginning as a philosopher to his Discourse on Metaphysics, which he composed in 1686 as a commentary on a running dispute between Nicolas Malebranche and Antoine Arnauld. This led to an extensive and valuable correspondence with Arnauld;[46] it and the Discourse were not published until the 19th century. In 1695, Leibniz made his public entrée into European philosophy with a journal article titled "New System of the Nature and Communication of Substances".[47] Between 1695 and 1705, he composed his New Essays on Human Understanding, a lengthy commentary on John Locke's 1690 An Essay Concerning Human Understanding, but upon learning of Locke's 1704 death, lost the desire to publish it, so that the New Essays were not published until 1765. The Monadologie, composed in 1714 and published posthumously, consists of 90 aphorisms.

Leibniz met Spinoza in 1676, read some of his unpublished writings, and has since been suspected of appropriating some of Spinoza's ideas. While Leibniz admired Spinoza's powerful intellect, he was also forthrightly dismayed by Spinoza's conclusions,[48] especially when these were inconsistent with Christian orthodoxy.

Unlike Descartes and Spinoza, Leibniz had a thorough university education in philosophy. He was influenced by his Leipzig professor Jakob Thomasius, who also supervised his BA thesis in philosophy.[4] Leibniz also eagerly read Francisco Suárez, a Spanish Jesuit respected even in Lutheran universities. Leibniz was deeply interested in the new methods and conclusions of Descartes, Huygens, Newton, and Boyle, but viewed their work through a lens heavily tinted by scholastic notions. Yet it remains the case that Leibniz's methods and concerns often anticipate the logic, and analytic and linguistic philosophy of the 20th century.


Leibniz variously invoked one or another of seven fundamental philosophical Principles:[49]

  • Identity/contradiction. If a proposition is true, then its negation is false and vice versa.
  • Identity of indiscernibles. Two distinct things cannot have all their properties in common. If every predicate possessed by x is also possessed by y and vice versa, then entities x and y are identical; to suppose two things indiscernible is to suppose the same thing under two names. Frequently invoked in modern logic and philosophy, the "identity of indiscernibles" is often referred to as Leibniz's Law. It has attracted the most controversy and criticism, especially from corpuscular philosophy and quantum mechanics.
  • Sufficient reason. "There must be a sufficient reason for anything to exist, for any event to occur, for any truth to obtain."[50]
  • Pre-established harmony.[51] "[T]he appropriate nature of each substance brings it about that what happens to one corresponds to what happens to all the others, without, however, their acting upon one another directly." (Discourse on Metaphysics, XIV) A dropped glass shatters because it "knows" it has hit the ground, and not because the impact with the ground "compels" the glass to split.
  • Law of Continuity. Natura non facit saltus[52] (literally, "Nature does not make jumps").
  • Optimism. "God assuredly always chooses the best."[53]
  • Plenitude. Leibniz believed that the best of all possible worlds would actualize every genuine possibility, and argued in Théodicée that this best of all possible worlds will contain all possibilities, with our finite experience of eternity giving no reason to dispute nature's perfection.[54]

Leibniz would on occasion give a rational defense of a specific principle, but more often took them for granted.[55]


Leibniz's best known contribution to metaphysics is his theory of monads, as exposited in Monadologie. According to Leibniz, monads are elementary particles with blurred perceptions of one another. Monads can also be compared to the corpuscles of the Mechanical Philosophy of René Descartes and others. Monads are the ultimate elements of the universe. The monads are "substantial forms of being" with the following properties: they are eternal, indecomposable, individual, subject to their own laws, un-interacting, and each reflecting the entire universe in a pre-established harmony (a historically important example of panpsychism). Monads are centers of force; substance is force, while space, matter, and motion are merely phenomenal.

The ontological essence of a monad is its irreducible simplicity. Unlike atoms, monads possess no material or spatial character. They also differ from atoms by their complete mutual independence, so that interactions among monads are only apparent. Instead, by virtue of the principle of pre-established harmony, each monad follows a preprogrammed set of "instructions" peculiar to itself, so that a monad "knows" what to do at each moment. By virtue of these intrinsic instructions, each monad is like a little mirror of the universe. Monads need not be "small"; e.g., each human being constitutes a monad, in which case free will is problematic.

Monads are purported to have gotten rid of the problematic:

  • interaction between mind and matter arising in the system of Descartes;
  • lack of individuation inherent to the system of Spinoza, which represents individual creatures as merely accidental.

Theodicy and optimism[edit]

Further information: Best of all possible worlds and Philosophical optimism

The Theodicy[56] tries to justify the apparent imperfections of the world by claiming that it is optimal among all possible worlds. It must be the best possible and most balanced world, because it was created by an all powerful and all knowing God, who would not choose to create an imperfect world if a better world could be known to him or possible to exist. In effect, apparent flaws that can be identified in this world must exist in every possible world, because otherwise God would have chosen to create the world that excluded those flaws.

Leibniz asserted that the truths of theology (religion) and philosophy cannot contradict each other, since reason and faith are both "gifts of God" so that their conflict would imply God contending against himself. The Theodicy is Leibniz's attempt to reconcile his personal philosophical system with his interpretation of the tenets of Christianity.[57] This project was motivated in part by Leibniz's belief, shared by many conservative philosophers and theologians during the Enlightenment, in the rational and enlightened nature of the Christian religion as compared to its purportedly less advanced non-Western counterparts. It was also shaped by Leibniz's belief in the perfectibility of human nature (if humanity relied on correct philosophy and religion as a guide), and by his belief that metaphysical necessity must have a rational or logical foundation, even if this metaphysical causality seemed inexplicable in terms of physical necessity (the natural laws identified by science).

Because reason and faith must be entirely reconciled, any tenet of faith which could not be defended by reason must be rejected. Leibniz then approached one of the central criticisms of Christian theism:[58] if God is all good, all wise and all powerful, how did evil come into the world? The answer (according to Leibniz) is that, while God is indeed unlimited in wisdom and power, his human creations, as creations, are limited both in their wisdom and in their will (power to act). This predisposes humans to false beliefs, wrong decisions and ineffective actions in the exercise of their free will. God does not arbitrarily inflict pain and suffering on humans; rather he permits both moral evil (sin) and physical evil (pain and suffering) as the necessary consequences of metaphysical evil (imperfection), as a means by which humans can identify and correct their erroneous decisions, and as a contrast to true good.

Further, although human actions flow from prior causes that ultimately arise in God, and therefore are known as a metaphysical certainty to God, an individual's free will is exercised within natural laws, where choices are merely contingently necessary, to be decided in the event by a "wonderful spontaneity" that provides individuals an escape from rigorous predestination.

Discourse on Metaphysics[edit]

For Leibniz, "God is an absolutely perfect being." He describes this perfection later in section VI as the simplest form of something with the most substantial outcome (VI). Along these lines, he declares that every type of perfection "pertains to him (God) in the highest degree" (I). Even though his types of perfections are not specifically drawn out, Leibniz highlights the one thing that, to him, does certify imperfections and proves that God is perfect: "that one acts imperfectly if he acts with less perfection than he is capable of", and since God is a perfect being, he cannot act imperfectly (III). Because God cannot act imperfectly, the decisions he makes pertaining to the world must be perfect. Leibniz also comforts readers, stating that because he has done everything to the most perfect degree; those who love him cannot be injured. However, to love God is a subject of difficulty as Leibniz believes that we are "not disposed to wish for that which God desires" because we have the ability to alter our disposition (IV). In accordance with this, many act as rebels, but Leibniz says that the only way we can truly love God is by being content "with all that comes to us according to his will" (IV).

Because God is "an absolutely perfect being" (I), Leibniz argues that God would be acting imperfectly if he acted with any less perfection than what he is able of (III). His syllogism then ends with the statement that God has made the world perfectly in all ways. This also effects how we should view God and his will. Leibniz states that, in lieu of God’s will, we have to understand that God "is the best of all masters" and he will know when his good succeeds, so we, therefore, must act in conformity to his good will – or as much of it as we understand (IV). In our view of God, Leibniz declares that we cannot admire the work solely because of the maker, lest we mar the glory and love God in doing so. Instead, we must admire the maker for the work he has done (II). Effectively, Leibniz states that if we say the earth is good because of the will of God, and not good according to some standards of goodness, then how can we praise God for what he has done if contrary actions are also praiseworthy by this definition (II). Leibniz then asserts that different principles and geometry cannot simply be from the will of God, but must follow from his understanding.[59]

Fundamental question of metaphysics[edit]

Leibniz wrote: "Why is there something rather than nothing? The sufficient reason ... is found in a substance which ... is a necessary being bearing the reason for its existence within itself."[60]Martin Heidegger called this question "the fundamental question of metaphysics".[61][62]

Symbolic thought[edit]

Leibniz believed that much of human reasoning could be reduced to calculations of a sort, and that such calculations could resolve many differences of opinion:

The only way to rectify our reasonings is to make them as tangible as those of the Mathematicians, so that we can find our error at a glance, and when there are disputes among persons, we can simply say: Let us calculate [calculemus], without further ado, to see who is right.[63]

Leibniz's calculus ratiocinator, which resembles symbolic logic, can be viewed as a way of making such calculations feasible. Leibniz wrote memoranda[64] that can now be read as groping attempts to get symbolic logic—and thus his calculus—off the ground. These writings remained unpublished until the appearance of a selection edited by C.I. Gerhardt (1859). L. Couturat published a selection in 1901; by this time the main developments of modern logic had been created by Charles Sanders Peirce and by Gottlob Frege.

Leibniz thought symbols were important for human understanding. He attached so much importance to the development of good notations that he attributed all his discoveries in mathematics to this. His notation for calculus is an example of his skill in this regard. Peirce, a 19th-century pioneer of semiotics, shared Leibniz's passion for symbols and notation, and his belief that these are essential to a well-running logic and mathematics.

But Leibniz took his speculations much further. Defining a character as any written sign, he then defined a "real" character as one that represents an idea directly and not simply as the word embodying the idea. Some real characters, such as the notation of logic, serve only to facilitate reasoning. Many characters well known in his day, including Egyptian hieroglyphics, Chinese characters, and the symbols of astronomy and chemistry, he deemed not real.[65] Instead, he proposed the creation of a characteristica universalis or "universal characteristic", built on an alphabet of human thought in which each fundamental concept would be represented by a unique "real" character:

It is obvious that if we could find characters or signs suited for expressing all our thoughts as clearly and as exactly as arithmetic expresses numbers or geometry expresses lines, we could do in all matters insofar as they are subject to reasoning all that we can do in arithmetic and geometry. For all investigations which depend on reasoning would be carried out by transposing these characters and by a species of calculus.[66]

Complex thoughts would be represented by combining characters for simpler thoughts. Leibniz saw that the uniqueness of prime factorization suggests a central role for prime numbers in the universal characteristic, a striking anticipation of Gödel numbering. Granted, there is no intuitive or mnemonic way to number any set of elementary concepts using the prime numbers. Leibniz's idea of reasoning through a universal language of symbols and calculations, however, remarkably foreshadows great 20th century developments in formal systems, such as Turing completeness, where computation was used to define equivalent universal languages (see Turing degree).

Because Leibniz was a mathematical novice when he first wrote about the characteristic, at first he did not conceive it as an algebra but rather as a universal language or script. Only in 1676 did he conceive of a kind of "algebra of thought", modeled on and including conventional algebra and its notation. The resulting characteristic included a logical calculus, some combinatorics, algebra, his analysis situs (geometry of situation), a universal concept language, and more.

What Leibniz actually intended by his characteristica universalis and calculus ratiocinator, and the extent to which modern formal logic does justice to calculus, may never be established.[67]

Formal logic[edit]

Main article: Algebraic logic

Leibniz is one of the most important logicians between Aristotle and 1847, when George Boole and Augustus De Morgan each published books that began modern formal logic. Leibniz enunciated the principal properties of what we now call conjunction, disjunction, negation, identity, set inclusion, and the empty set. The principles of Leibniz's logic and, arguably, of his whole philosophy, reduce to two:

  1. All our ideas are compounded from a very small number of simple ideas, which form the alphabet of human thought.
  2. Complex ideas proceed from these simple ideas by a uniform and symmetrical combination, analogous to arithmetical multiplication.

The formal logic that emerged early in the 20th century also requires, at minimum, unary negation and quantifiedvariables ranging over some universe of discourse.

Leibniz published nothing on formal logic in his lifetime; most of what he wrote on the subject consists of working drafts. In his book History of Western Philosophy, Bertrand Russell went so far as to claim that Leibniz had developed logic in his unpublished writings to a level which was reached only 200 years later.

Russell's principal work on Leibniz found that many of Leibniz's most startling philosophical ideas and claims (e.g., that each of the fundamental monads mirrors the whole universe) follow logically from Leibniz's conscious choice to reject relations between things as unreal. He regarded such relations as (real) qualities of things (Leibniz admitted unarypredicates only): For him "Mary is the mother of John" describes separate qualities of Mary and of John. This view contrasts with the relational logic of De Morgan, Peirce, Schröder and Russell himself, now standard in predicate logic. Notably, Leibniz also declared space and time to be inherently relational.[68]


Although the mathematical notion of function was implicit in trigonometric and logarithmic tables, which existed in his day, Leibniz was the first, in 1692 and 1694, to employ it explicitly, to denote any of several geometric concepts derived from a curve, such as abscissa, ordinate, tangent, chord, and the perpendicular.[69] In the 18th century, "function" lost these geometrical associations.

Leibniz was the first to see that the coefficients of a system of linear equations could be arranged into an array, now called a matrix, which can be manipulated to find the solution of the system, if any. This method was later called Gaussian elimination. Leibniz's discoveries of Boolean algebra and of symbolic logic, also relevant to mathematics, are discussed in the preceding section. The best overview of Leibniz's writings on calculus may be found in Bos (1974).[70]


Leibniz is credited, along with Sir Isaac Newton, with the discovery of calculus (differential and integral calculus). According to Leibniz's notebooks, a critical breakthrough occurred on 11 November 1675, when he employed integral calculus for the first time to find the area under the graph of a function = ().[71] He introduced several notations used to this day, for instance the integral sign∫, representing an elongated S, from the Latin word summa, and the d used for differentials, from the Latin word differentia. This cleverly suggestive notation for calculus is probably his most enduring mathematical legacy. Leibniz did not publish anything about his calculus until 1684.[72] Leibniz expressed the inverse relation of integration and differentiation, later called the fundamental theorem of calculus, by means of a figure[73] in his 1693 paper Supplementum geometriae dimensoriae....[74] However, James Gregory is credited for the theorem's discovery in geometric form, Isaac Barrow proved a more generalized geometric version, and Newton developed supporting theory. The concept became more transparent as developed through Leibniz's formalism and new notation.[75] The product rule of differential calculus is still called "Leibniz's law". In addition, the theorem that tells how and when to differentiate under the integral sign is called the Leibniz integral rule.

Leibniz exploited infinitesimals in developing calculus, manipulating them in ways suggesting that they had paradoxicalalgebraic properties. George Berkeley, in a tract called The Analyst and also in De Motu, criticized these. A recent study argues that Leibnizian calculus was free of contradictions, and was better grounded than Berkeley's empiricist criticisms.[76]

From 1711 until his death, Leibniz was engaged in a dispute with John Keill, Newton and others, over whether Leibniz had invented calculus independently of Newton. This subject is treated at length in the article Leibniz–Newton calculus controversy.

The use of infinitesimals in mathematics was frowned upon by followers of Karl Weierstrass,[citation needed] but survived in science and engineering, and even in rigorous mathematics, via the fundamental computational device known as the differential. Beginning in 1960, Abraham Robinson worked out a rigorous foundation for Leibniz's infinitesimals, using model theory, in the context of a field of hyperreal numbers. The resulting non-standard analysis can be seen as a belated vindication of Leibniz's mathematical reasoning. Robinson's transfer principle is a mathematical implementation of Leibniz's heuristic law of continuity, while the standard part function implements the Leibnizian transcendental law of homogeneity.


Leibniz was the first to use the term analysis situs,[77] later used in the 19th century to refer to what is now known as topology

Engraving of Gottfried Wilhelm Leibniz
A page from Leibniz's manuscript of the Monadology
Home Page

Gottfried Wilhelm Leibniz

Gottfried Wilhelm Leibniz (b. 1646, d. 1716) was a German philosopher, mathematician, and logician who is probably most well known for having invented the differential and integral calculus (independently of Sir Isaac Newton). In his correspondence with the leading intellectual and political figures of his era, he discussed mathematics, logic, science, history, law, and theology.

Principal Works:

  • De Arte Combinatoria (‘On the Art of Combination’), 1666
  • Hypothesis Physica Nova (‘New Physical Hypothesis’), 1671
  • Discours de métaphysique (‘Discourse on Metphysics’), 1686
  • unpublished manuscripts on the calculus of concepts, c. 1690
  • Nouveaux Essais sur L'entendement humaine (‘New Essays on Human Understanding’), 1705
  • Théodicée (‘Theodicy’), 1710
  • Monadologia (‘The Monadology’), 1714

Leibniz's Life:

  • Born July 1, 1646, in Leipzig
  • 1661, entered University of Leipzig (as a law student)
  • 1663, baccalaureate thesis, De Principio Individui (‘On the Principle of the Individual’)
  • 1667, entered the service of the Baron of Boineburg
  • 1672 - 1676, lived in Paris (met Malebranche, Arnauld, Huygens)
  • 1675, laid the foundation of the differential/integral calculus
  • 1676, entered the service of the Duke of Hannover; worked on hydraulic presses, windmills, lamps, submarines, clocks, carriages, water pumps, the binary number system
  • published Nova Methodus Pro Maximus et Minimus (‘New Method for the Greatest and the Least’), an exposition of his differential calculus
  • 1685, took on the duties of historian for the House of Brunswick
  • 1691, named librarian at Wolfenbuettel
  • 1700, named foreign member of the French Academy of Sciences in Paris
  • 1711, met the Russian czar Peter the Great
  • Died, November 14, 1716, in Hannover

Leibniz's Contributions To Philosophy:

Leibniz is known among philosophers for his wide range of thought about fundamental philosophical ideas and principles, including truth, necessary and contingent truths, possible worlds, the principle of sufficient reason (i.e., that nothing occurs without a reason), the principle of pre-established harmony (i.e., that God constructed the universe in such a way that corresponding mental and physical events occur simultaneously), and the principle of noncontradiction (i.e., that any proposition from which a contradiction can be derived is false). Leibniz had a lifelong interest in and pursuit of the idea that the principles of reasoning could be reduced to a formal symbolic system, an algebra or calculus of thought, in which controversy would be settled by calculations.

Further Reading:

  • Wolfgang Lenzen, Das System Der Leibnizschen Logik, Berlin: W.~de Gruyter, 1990
  • Benson Mates, The Philosophy of Leibniz, New York: Oxford University Press, 1986
  • Nicholas Rescher, Leibniz, Totowa, N.J.: Rowman and Littlefield, 1979
  • Chris Swoyer, ‘Leibniz on Intension and Extension’, Nous 29/1 (1995): 96-114
  • Chris Swoyer, ‘Leibniz's Calculus of Real Addition’, Studia LeibnitianaXXVI/1 (1994): 1-30
  • R. S. Woolhouse, (ed.), Gottfried Wilhelm Leibniz: Critical Assessments, Volumes I - IV, Routledge Publishing Co., 1993
  • Edward N. Zalta, ‘A (Leibnizian) Theory of Concepts’, Philosophiegeschichte und logische Analyse / Logical Analysis and History of Philosophy), 3 (2000): 137-183

One thought on “Gottfried Leibniz Bibliography Page

Leave a Reply

Your email address will not be published. Required fields are marked *